How Much You Need To Expect You'll Pay For A Good البيانات الضخمة
تشمل البيانات الضخمة مصادر متعددة مثل وسائط التواصل الاجتماعي، والأجهزة الذكية، والسجلات الإلكترونية، والأجهزة الاستشعار، والمزيد.
تعمل هذه الأنظمة بشكل جيد للغاية لإدارة والوصول إلى البيانات التي تستفيد من هياكل البيانات الموحدة ؛ ومع ذلك ، مع نمو أحجام البيانات ، يبدأ أداؤها في الانحناء تحت ضغط الحمل.
يتم تخزين البيانات المنظمة في مستودع بيانات مع قيود صارمة ومخطط محدد. أي تغيير في المتطلبات يعني تحديث كل تلك البيانات المنظمة لتلبية الاحتياجات الجديدة. هذا عيب كبير من حيث إدارة الموارد والوقت.
يمكن أن تمتد مجموعة متنوعة من البيانات لمساعدة المؤسسات على فهم ملفات تعريف العملاء وشخصياتهم. على سبيل المثال ، قد تجد الشركة أنه من المفيد معرفة ليس فقط عدد الأشخاص الذين يفتحون رسالتهم الإخبارية ، ولكن أيضًا لماذا قاموا بفتحها وتمييز خصائص الجمهور.
يُترجم هذا تقريبًا إلى حوالي أربعة ملايين مرة أكثر من الدورات في الثانية ، بالإضافة إلى التحسينات في مقدار العمل الذي يمكن إنجازه في إحدى تلك الدورات.
UC San Diego is an educational powerhouse and financial engine, recognized as among the prime 10 public universities by U.S. Information and World Report. Innovation is central to who we're and what we do. Below, learners understand that information is not just acquired within the classroom—life is their laboratory.
الاستخدام الغير مشروع: يجب تجنب استخدام البيانات الضخمة بطرق غير مشروعة أو غير قانونية نون مثل الاستخدام في التجسس أو التمييز أو الانتهاكات الأخلاقية.
تعد سرعة التقاط البيانات وتحليلها رصيدًا كبيرًا للشركات لاتخاذ قرارات سريعة.
توجد العديد من الأدوات والتقنيات التي تستخدم في تحليل البيانات الضخمة، ومنها:
تحسين خدمة العملاء: يمكن استخدام البيانات الضخمة لفهم سلوك العملاء وتفضيلاتهم. يتم جمع البيانات من مصادر مختلفة مثل وسائل التواصل الاجتماعي والتقييمات والمراجعات، وتحليلها لاكتشاف الاتجاهات والمعايير التي تؤثر في تجربة العملاء.
تحليل البيانات الضخمة والذكاء الاصطناعي يرتبطان بشكل وثيق، حيث يعتبر الذكاء الاصطناعي أداة قوية لاستخلاص المعرفة والإفادة من البيانات الضخمة.
تحسين الإنتاجية وإدارة الأصول: يمكن استخدام البيانات الضخمة لتحسين الإنتاجية وإدارة الأصول بشكل أفضل. عن طريق مراقبة وتحليل البيانات المتاحة حول أداء المعدات والماكينات، يمكن تحديد أوقات التشغيل الفعالة والتوجهات غير الطبيعية والتنبؤ بأعطال المعدات قبل حدوثها.
تمكننا تقنيات تعلم الآلة من استخراج النماذج والتوجهات من البيانات الكبيرة واستخدامها في تطبيقات الذكاء الاصطناعي.
تحليل البيانات الكبيرة يلعب دورًا حاسمًا في استخراج المعلومات القيمة من البيانات الهائلة. يمكن تحقيق ذلك من خلال استخدام تقنيات التحليل الإحصائي وتعلم الآلة لتحديد الأنماط والتوجهات والمعلومات القيمة الأخرى في البيانات الضخمة.